Baranyi Roland
2017 Június 03.
Mi a gravitációs hullám?

Két alapmodell létezik arra, hogy a feketelyuk-kettősök hogyan jöhetnek létre:

  • Az első modell szerint a fekete lyukak együtt keletkeznek: egy kettősrendszert alkotó csillagpár mindkét tagja szupernóvaként felrobban, amiben, mivel az eredeti csillagok összehangoltan forogtak, a keletkező fekete lyukak forgása is összehangolt marad.
  • A másik modell szerint a fekete lyukak csak a kialakulásuk után találkoznak egymással, sűrű csillaghalmazokon belül. A fekete lyukak azután alkotnak kettősrendszert egymással, hogy mindketten a csillaghalmaz közepébe süllyedtek. E folyamat eredményeként a fekete lyukak bármilyen irányban foroghatnak a keringés síkjához képest.  

Mivel a LIGO több bizonyítékát látja annak, hogy a most bejelentett GW170104 fekete lyukai nem összehangoltan forogtak, az adatok valamivel jobban alátámasztják a sűrű csillaghalmazokban keletkezés elméletét.

“A tanszékünkön folyó asztrofizikai kutatások több szállal is kapcsolódnak a most születő gravitációshullám-asztrofizika témaköréhez. Kocsis Bence egy ERC Starting Grant nevű kutatási ösztöndíjat nyert, és sűrű csillaghalmazok fizikájával foglalkozik az ELTE LIGO tagcsoportjával együttműködve. Pontosan ilyen környezetben alakulnak azok a feketelyuk-párok, amelyeknek gravitációshullám-jelét most észleltük” – mondja Frei Zsolt.

Einstein újabb igazolása

Az észlelés ismét próbának vetette alá Albert Einstein gravitációelméletét. A kutatók például egy diszperziónak nevezett jelenséget is kerestek, amely fényhullámoknak egy anyagi közegen történő áthaladásakor is fellép, például üvegben, ahol a fényhullámok a hullámhosszuktól függő sebességgel haladnak át: a prizmák ennek segítségével hoznak létre szivárványt. Einstein általános relativitáselmélete kizárja a gravitációs hullámok diszperzióját a forrásuktól a Földig tartó útjuk során. A LIGO – az elmélet várakozásaival összhangban – nem is találta nyomát ennek a jelenségnek.

"Az első három közvetlen gravitációshullám-észlelést elemezve, a kutatók az általános relativitáselmélettől való olyan eltérések lehetőségét vizsgálták, amelyekben sérül a lokális Lorentz-invariancia, vagyis a modern fizikai elméletek egyik alapkövetelménye. Bizonyos kvantumgravitációs elmélet-jelöltek esetében így a gravitáció a fénysebességtől különböző sebességgel terjedne. Az észlelések elemzése azt mutatta, hogy az eltérés kimutathatatlan" – mondta Gergely Árpád László, a Szegedi Tudományegyetem (SZTE) professzora, az SZTE LIGO- csoportjának vezetője.

 

31
5
További hasonló sztorik